We seek to understand and document all radio transmissions, legal and otherwise, as part of the radio listening hobby. We do not encourage any radio operations contrary to regulations. Always consult with the appropriate authorities if you have questions concerning what is permissible in your locale.

Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Topics - ka1iic

Pages: 1 2 3 [4] 5 6 7 8 9 10 11 12 ... 17
46
Huh? / Samsung exploding washing machines
« on: October 20, 2016, 1831 UTC »
http://boston.cbslocal.com/2016/10/19/samsung-exploding-washing-machines/

Yep!  Wash your clothes and blow up ur house...  sounds reasonable to me...

Ok folks let's all say this out loud in unison;

"Chinese Copy"!!!

Is this a mad program to over throw the world...  more later on this tending subject!!!

Fisk

47
General Radio Discussion / Words to remember!
« on: October 07, 2016, 1525 UTC »
From a commencement address by Richard Feynman:

    It's a kind of scientific integrity, a principle of scientific thought that corresponds
    to a kind of utter honesty-a kind of leaning over backwards. For example, if
    you're doing an experiment, you should report everything that you think might
    make it invalid-not only what you think is right about it: other causes that could
    possibly explain your results; and things you thought of that you've eliminated
    by some other experiment, and how they worked-to make sure the other fellow
    can tell they have been eliminated.

    Details that could throw doubt on your interpretation must be given, if you
    know them. You must do the best you can-if you know anything at all wrong,
    or possibly wrong-to explain it. If you make a theory, for example, and advertise
    it, or put it out, then you must also put down all the facts that disagree with it,
    as well as those that agree with it. There is also a more subtle problem. When
    you have put a lot of ideas together to make an elaborate theory, you want to
    make sure, when explaining what it fits, that those things it fits are not just the
    things that gave you the idea for the theory; but that the finished theory makes
    something else come out right, in addition.

Call this Feynman integrity.

48
The RF Workbench / TA7642 AM radio chip
« on: September 27, 2016, 0223 UTC »
Has anyone played around with the TA7642 AM radio chip?  I've been digging around in my junk box and found a few of these chips and figure it might make a nice winter project. Not just for AM radio but for a cute/small AM unit for what few SW broadcasters left...

What say folks...???

49
HF Beacons / UNID beacon 7999.5 CW 0121 UTC 27 Sep 2016
« on: September 27, 2016, 0121 UTC »
I am hearing a beacon on 7999.50khz with a 712 Hz tone with 18 beeps per.  Fading at times but with a good signal.

My recording of this is located at:

http://www69.zippyshare.com/v/ped0Qir2/file.html

Hope this helps as I haven't had much luck with beacons.  Hearing on a random length low height horizontal E/W using a MFJ-945E Tuner (POS)  the vertical 20m ant hears nothing here in Troy, Ohio.

73 Vince




50
Another one... here's the first paragraph or so:



[
1
]  Predicting the peak amplitude of the sunspot cycle is a
key goal of solar-terrestrial physics. The precursor method
currently favored for such predictions is based on the
dynamo model in which large-scale polar fields on the
decline of the 11-year solar cycle are converted to toroidal
(sunspot) fields during the subsequent cycle


The rest of the document will be found here:

http://www.leif.org/research/Cycle%2024%20Smallest%20100%20years.pdf

Enjoy ::)

51
This is a 15 page document that I figured some of you might want to read.  My biggest question is... Why didn't they ask us what the hell is going on.   :-\

Please give a comment on this one... (as he said with that stupid grin when he suspects something is wrong)



"The Panel is today releasing
predictions for

The impending solar minimum

Marking onset of Cycle 24

Provided basis for the other predictions

The peak sunspot number expected for
Cycle 24

The time of the peak sunspot number

What follows is the consensus of the panel"


http://www.swpc.noaa.gov/sites/default/files/images/u2/Solar%20Cycle%20Progression%20and%20Prediction.pdf

SO?  What do you think?  Are our tax dollars working for us with the computer projections?

Keep in mind the theory of Chaos ...    :P


52
VOA Chinese 15590khz 1400utc 30 08 2016 (Philippines)

This is an SWL's best bet for the Philippines, signal today is an S9+ with rapid fading (which is expected for Asia). The station is running 250,000 watts so it's an easy catch.


53
85
         ELECTRONIC
S AND ELECTRIC
AL ENGINEERING
      ISSN 1392 – 1215                                                                                                2011. No.
 6(112)
                                             ELEKTRONIKA IR ELEKTROTECHNIKA
SIGNAL  TECHNOLOGY
T       121                                                       
SIGNAL
Ų
  TECHNOLOGIJA
Noise Level Estimation in th
e Shortwave F
requency Range
E. Lossmann, M. A. Meister, U. Madar
Dept. of Radio and Communications Engineering,
Tallinn University of Technology, 
Ehitajate tee 5, 19086 Tallinn, Estonia, phone +372 620
2360, e-mail:
eriklos@lr.ttu.ee
Introduction
The presence of noise is th
e fundamental principle of
wireless communication which must be taken into account
always when setting the parameters of radio system such as
sensitivity,  modulation  type  and  coding,  but  also  choosing 
location     of     the     receiving     site     etc.     Generally,     
electromagnetic noise is classi
fied according to its source –
atmospheric or man-made noise. It is common to apply the
recommendation    ITU-R    P.372-9    for    estimating    the   
environmental    character    of    background    noise.    The   
recommendation  defines  five  typical  environments  in  the 
context of RF (
Radio Frequency
) reception. 
At   lower   frequencies   of   short-wave   band,   the   
atmospheric   noise   predomin
ates.   The   main   causes   of   
atmospheric  noise  are  thunders
torms,  occurring  mostly  in 
the  tropical  regions  of  the 
Earth.  Electromagnetic  noise, 
developed    by    these    storms,    uses    much    the    same   
propagation   mechanisms   as
    the    skywave.    Temporal   
grouping   of   noises   depends   on   daily   changes   in   the   
ionosphere,  time  of  the  year,  and  solar  activity.  Total 
atmospheric  noise  level  at  a  receiving  site  is  in  tight 
correlation with local weathe
r conditions. For example the
local  thunderstorm  may  increase  the  noise  levels  by  about 
10 dB, compared to a silent period [1]. 
Level  of  a  man-made  noise  is  less  dependent  on  the 
number   of   people,   living   in   a   certain   area,   than   the   
technical sophistication of loca
l infrastructure and lifestyle.
Power   supplies   of   some   lighting   equipment,   starting   
systems for electrical motors, generators, different impulse
power  supplies  and  big  computer  farms  contribute  to  the 
level  of  local  noise  environm
ent.  Because  of  this,  the 
background    noise    levels    in    peak    hours    can    raise   
substantially over the top level set by the standards [2].
As  the  infrastructure  in  Estonia  has  changed  greatly 
within   the   last   decade   and   
the   level   of   technological   
sophistication   has   increased   significantly   also   in   rural   
areas,  it  is  appropriate  to  explore  how  those  5  different 
noise environments described in the recommendation ITU-
R   P.372-9   can   be   empirically   identified   and   which   
particular  sources  of  noise  they  mainly  depend  on.  The 
monitoring  was  carried  out  to  evaluate  short-wave  radio 
communication   sites   with   respect   to   the   quality   of   
reception  and  to  get  an  over
view  of  spectral  occupancy 
within the frequency range from 1.5 to 15 MHz.
Measurements
Since   short-wave   range   is   not   in   the   focus   of   
commercial  interest,  there  is  a  lack  of  comprehensive  data 
about  spectrum  usage  and  electromagnetic  noise  level  in 
Estonia. In order to determine the character of background
noise  in  the  prospective  shor
twave  reception  sites  and  to 
gather data about spectral occupancy in general the current
survey was initiated by the
Estonian Defense Forces.
We present several samples of the measured data and
give  an  outline  of  monitoring  equipment  in  this  paper,  but 
the more detailed description of the research procedure has
been proposed by the authors in [3].
Right   choice   of   the   antenna   is   critical   to   the   
measuring    of    interferences,    because    the    directivity,   
polarization and gain character
istics affect significantly the
results of the measurement [4]. Also the stability of power
supply has crucial importance. We conducted comparative
measurements,  using  power  from  the  battery  to  check  the 
noise   level   induced   by   the   local   mains   power.   The   
monitoring  receiver  in  use  was  Rohde  &  Schwarz  ESMB 
with  the  active  monopole  (rod)  antenna  and  the  laptop 
computer    equipped    with    the    monitoring    application   
ARGUS (Fig. 1).
Fig. 1.
Layout of the monitoring system
The  RF  band  was  scanned  using  5  kHz  frequency 
step   and   with   receiver   bandwidth   4   kHz   (Fig.   2).   
Measurement    results    were    analyzed    using    software   
package MATLAB.
86
Fig. 2.
Parameters related to the measurements
Recommendation ITU-R P.372-9
External  noise  is  among  the  most  important  factors 
determining  the  noise  floor  when  estimating  the  signal-to-
noise   ratio   in   short-wave   range.   Certainly   it   is   most   
advantageous  to  operate  on  short-wave  channel  with  no 
interference  at  the  distant  end  receiver  in  the  optimum 
operating  frequency,  yet  this  is  not  commonly  feasible. 
The   useful   radio   signal   has   to   compete   with   the   
disturbances  in  the  radio  channel  at  every  given  moment, 
considering  theoretically  unlim
ited  number  of  noise  and 
interference  sources.  In  addition  to  the  local  sources  of 
background  noise  and  interference  one  also  needs  to  take 
into  account  noises,  originating  thousands  of  kilometers 
away, as ionosphere is equally well providing propagation
of signal, noise and diverse interferences.
ITU-R  P.372-9  gives  the  common  methodology  for 
specification   of   noise   electromagnetic   pattern   in   four   
environmental   categories   plus   galactic   noise.   While   
predicting  the  expected  noise  levels,  the  characteristic 
trends   with   frequency,   time   of   day,   season,   and   the   
geographical  location  are  taken  into  account  explicitly. 
There  are  other  variations  that  could  be  considered  only 
statistically.  The  Recommendation  gives  the  prediction 
methodology for approximated calculations of background
noise  level  on  the  assumption  that  interferences  due  to 
surplus  co-channel  transmissions  and  other  sources  of 
impulse noise in close range are not present [5, 6].
The external noise figure
F
a
 which is defined by ITU-
R  P.372-9  in  logarithmic  notation
for  the  frequency 
f
applies   to   a   short   vertical   antenna   over   a   perfectly   
conducting  ground  plane.  This  parameter  is  related  to 
rms
noise field strength
E
n
along the antenna by
5
.
95
log
20




B
f
F
E
a
n
,             
(1)
where
E
n
   is   in   dB   (above   1   μV/m),   frequency   
f
   is   
expressed  in  MHz,  and  the  receiver  bandwidth 
B
  –  in  dB 
(where
B
 is in dB-Hz).
In a real communication envi
ronment the character of
external   noise   power   is   highly   impulsive   and   non-
Gaussian,  hence  fitting  of  probabilistic  distribution  of  the 
received random noise waveform is required. Nevertheless,
for  the  long-term  predictions  it  is  more  convenient  to  use 
the  median  level  of  man-made  noise.  For  estimation  of 
median  values  of  man-made  noise  power  for  different 
environments  and  frequencies 
the  following  expression  is 
given by:

dB
f
d
c
F
am
,
log


,                       
(2)
where frequency
f
is expressed in MHz and environmental
constants
c
 and
d
 are listed in the Table 1.
Table 1.
Values of
environmental constants
c
 and
d
Environmental category 
c                        d                       
Business (curve A) 
76.8
27.7
Residential (curve
 B) 
72.5
27.7
Rural (curve C) 
67.2
27.7
Quiet rural (curve D) 
53.6
28.6
Galactic noise (curve E) 
52.0
23.0
The    curves    illustrating    the    expected    levels    of   
background noise are shown on Fig. 3.
Fig.  3. 
Curves  of  the  expected  background  noise  level  for  the 
frequency range from 1.5 to 15 MHz
These   curves   are   idealized
.   The   recommendation   also   
gives  table  for 
decile
  values  of  average  man-made  noise 
power  expressed  in  dB  above  or  below  the  median.  These 
values   were   measured   in   the   1970s   and   may   change   
considerably  with  day-to-day,  in  order  to  the  activities 
which  may  generate  man-made  noise.  It  shows  that  short-
term behaviour of the noise level can vary rather largely. 
Comparison of the empirical data to the
Recommendation
In  real  communication  en
vironment  the  value  of 
F
a
changes   stochastically,   as   both   the   development   of   
thunderstorms  and  propagation  conditions  are  changing 
randomly.  Usually  domestic  appliances  and  their  power 
supplies  can  cause  the  noise  on  low  frequencies.  The 
atmospheric  noise  predominates  at  frequencies  below  10 
MHz, but simultaneously we can find the man-made noise
and interference pattern as well.
 This is the case illustrated
on Fig. 4. Measurements were carried out on 28
th
 October
2009 during daytime between 12 and 13 UTC.
Fig.  5  and  Fig.  6  are  examples  of  background  noise 
pattern  at  two  rural  sites  and 
the  associated  contours  plot 
were recorded on the 21
st
 and 25
th
 of October 2009.
Fig.  6  reveals  broadband  disturbances  below  5  MHz 
originated  from  the  combinati
on  of  an  engine-generator 
and bad grounding of the communication equipment.
Fig. 7 and Fig. 8 present plots of the noise pattern in
two  residential  areas.  Spectrum  was  scanned  on  21
st
of
October  and  10
th
  of  November  2009  between  1400  and 
87
1500 UTC. The daily sunspot number varied from 11 to 23
during the monitoring.
Fig. 4.
Measured background noise
at a quiet rural site 
Fig. 5.
Measured background noise at a rural site 1
Fig. 6.
Measured background noise at a rural site 2
We  refer  to  it  as  the  quiet  period  of  solar  activity. 
These plots are shown to illustrate strong interferences and
man-made  noise  regarding  the  location,  the  time-of-day 
and   propagation   conditions.   The   comparisons   between   
theoretical  level  of  predicted  data  and  those  measured  in 
practice  reveal  considerable  disparities  [6].  Although  the 
noise  dissemination  may  use  either  sky  wave  or  ground 
wave methods the primary sources of noise are local ones. 
Fig.  9  shows  measurement  results  performed  in  an 
office at the University of Technology equipped with large
PC  farms.  Yet  the  ITU-R  P.372-9  does  not  cover  the 
indoor  noise  levels.  This  example  is  present  to  view  as  a 
reference  to  get  the  idea  of  the  EMC  scenario.  The  PC 
emission dominates over the spectrum in question as it was
expected. Similar measurements were made by Weinmann
and Dostert [7].
Fig. 7.
Measured background noise at a residential site 1
Fig. 8.
Measured background noise at a residential site 2
Fig. 9.
Measured background noise at a business site inside the
building
Conclusions
The   lower   end   of   shortwave   band   is   a   very   
complicated  communications  environment  with  respect  to 
noise  and  interference.  There  exist  significant  deviations 
from  the  expected  background  noise  level,  especially  at 
lower  frequencies  from  1.5  to  4  MHz  since  the  amplitude 
of  man-made  noise  decreases  with  increasing  frequency. 
The  noise  originates  mainly  from  electric  motors  and 
ignition  systems  located  in  th
e  close  range  of  receiving 
antenna.  The  good  grounding  is  also  very  important  for 
shortwave communication. However, business sites with a
number  of  interference  sources  such  as  computer  farms 
and  various  communication  systems  produce  equally  very 
high   levels   of   background   noise   within   the   whole   
shortwave spectrum.
Altogether  the  noise  level  on  short  waves  could  be 
characterized relatively well by
using  the  data  provided  in 
ITU-R P.372-9.
88
There  is  a  need  for  more  detailed  knowledge  about 
the   variations   of   interference   levels.   It   is   of   crucial   
importance   to   monitor   shortwave   band   over   a   longer   
period  of  time  with  averaging  over  multiple  scans,  to 
observe  seasonal  changes,  so
lar  activity  etc  for  long-term 
channel assignment.
Acknowledgements
The  authors  would  like  to  extend  thanks  to  all  the  people 
that  participated  in  the  meas
urements  and  data  analysis. 
We  would  especially  like  to 
thank  Peeter  Lamster  for  his 
dedicated support and cooperation.
References
1.
Freeman R.
Telecommunications Transmission Handbook. –
USA: Wiley, 1998. – 1232 p.
2.
Berdnikova  J.,  Ruuben  T., 
Müürsepp  I.,  Lossmann  E. 
Resolution   and   Doppler   Tolerance   of   Cognitive   System   
Waveforms   //   Electronics   and   Electrical   Engineering.   –   
Kaunas: Technologija, 2010. – No. 7(103). – P. 101–104. 
3.
Meister  M.–A.,  Lossmann  E.,  Madar  U., 
Results  of  the 
Practical  Research  for  HF  Communications  in  Estonia  // 
Nordic  Shortwave  Conference  Proceedings.  –  Arkitektkopia 
AB, Växjö, Sweden, 2010. – P. 4.2.1.–4.2.10.
4.
Straw R.D
 The ARRL Antenna Book. – USA: The National
Association  for  Amateur  Radi
o,  Newington,  CT,  2007.  –  P. 
23–29 (chapter 23).
5.
Goodman  J.  M.
  Operational  communication  systems  and 
relationships to the ionosphere
 and space weather // Advances
in  Space  Research,  2005.  –  Vol.  36.  –  Iss.  12.  –  P.  2241–
2252.
6.
Bradley  P.  A.,  Damboldt  T.,  Suessmann  P.
,  Propagation 
models  for  HF  radio  service 
planning  //  HF  Radio  Systems 
and  Techniques,  2000.  –  Eighth  International  Conference  on 
(IEE Conf. Proc. No. 474). – P.175–179.
7.
Weinmann F., Dostert K.,
Verification of background noise
in    the    short    wave    frequency    range    according    to   
recommendation ITU–R P.372 // AE
U – International Journal
of  Electronics  and  Communications,  Volume  60,  Issue  3,  1 
March 2006. – P. 208–216.
Received 2011 03 15
E. Lossmann, M. A. Meister, U. Madar.
Noise Level Estimation in the Shortwave Frequency Range // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2011. – No. 6(112). – P. 85–88.
Noise  is  a  composite  signal  by  nature,  changing  widely  over  time,
  and  some  of  its  components  can 
be  controlled  while  the  others
cannot.  Although  the  signal-to-noise  ratio  (SNR
)  is  the  main  factor  determining  the  signa
l  quality  at  the  receiving  end,  it  is 
quite
complicated  to  define  the  characteristics  of  the  local  noise,  especially  in  the  shortwave  bands.  This  paper  provides  an  overvie
w  of  the 
background noise measurements to evaluate
the problematic shortwave communications s
ites in Estonia and to assess their suitabi
lity as
radio  receiving  sites.  Extensive  statistical  data  was  collected  during  the  study,  the  sources  of  interference  were  identified  a
nd  their 
spatiotemporal influence was analyzed. Moni
toring results were compared to methods
and models, presented in recommendation ITU-
R
P.372-9. Ill. 9, bibl. 7, ta
bl. 1 (in English; abstracts
in English and Lithuanian).
E.  Lossmann,  M.  A.  Meister,  U.  Madar.  Triukšmo  lygio 
į
vertinimas  trumpadažni
ų
  bang
ų
  diapazone  //  Elektronika  ir 
elektrotechnika. – Kaunas: Technologija, 2011. – Nr. 6(112). – P. 85–88.
Kai  kurias  triukšmo  signalo  dedam
ą
sias  galima  kontroliuoti,  kit
ų
  negalima.  Signalo  kokyb
ę
  lemia  signalo  ir  triukšmo  santykis. 
Estijoje  analizuojamas  trumpadažni
ų
  bang
ų
  diapazonas  ir  šiame  dažnyje  atlikti  triukšm
ų
  tyrimai.  Surinkti  statistiniai  duomenys. 
Nustatyti triukšm
ų
 šaltiniai, pateikta
į
takos analiz
ė
. Gauti rezultatai palyginti su ITU-R P.372-
9 rekomendacijoje apra
šytais metodais ir
modeliais. Il. 9, bibl. 7, lent. 1 (angl
ų
 kalba; santraukos angl
ų
 ir lietuvi
ų
 k.).


http://www.ee.ktu.lt/journal/2011/06/20__ISSN_1392-1215_Noise%20Level%20Estimation%20in%20the%20Shortwave%20Frequency%20Range.pdf

54

Cosmic radiation
Space research
Wednesday 24 Aug 16
|
by Morten Garly Andersen
Contact
Henrik Svensmark
Professor
DTU Space
+45 45 25 97 41
hsv@space.dtu.dk
Reference to the new paper

The full reference to the new paper is: J. Svensmark, M. B. Enghoff, N. J. Shaviv, and H. Svensmark, “The response of clouds and aerosols to cosmic ray decreases”, Journal of Geophysical Research – Space Physics, 2016, DOI: 10.1002/2016JA022689.

Click here or here  to access the abstract and full scientific paper.

Click here for information on terms of use of the full article accepted for publication in American Geophysical Unions 'Journal of Geophysical Research - Space Physics'.

Professor Henrik Svensmark can also be contacted direct at his mobile phone at +45 22 37 07 11.
Solar eruption increase energy on Earth

The suggested causal chain of reactions responsible for the observed correlations shown in the new study begins with a solar eruption resulting in fewer cosmic rays and therefore less atmospheric ionisation.

This results in fewer formed cloud condensation nuclei and then fewer clouds and ultimately an increase in the energy that reaches Earth’s surface.
Solar variations affect the abundance of clouds in our atmosphere, a new study lead by DTU Space suggests. Large eruptions on the surface of the Sun can temporarily shield Earth from so-called cosmic rays which now appear to affect cloud formation.

A team of scientists from the National Space Institute at the Technical University of Denmark (DTU Space) and the Racah Institute of Physics at the Hebrew University of Jerusalem has linked large solar eruptions to changes in Earth’s cloud cover in a study based on over 25 years of satellite observations.

The solar eruptions are known to shield Earth’s atmosphere from cosmic rays. However the new study, published in Journal of Geophysical Research: Space Physics, shows that the global cloud cover is simultaneously reduced, supporting the idea that cosmic rays are important for cloud formation. The eruptions cause a reduction in cloud fraction of about 2 percent corresponding to roughly a billion tonnes of liquid water disappearing from the atmosphere.

Since clouds are known to affect global temperatures on longer timescales, the present investigation represents an important step in the understanding of clouds and climate variability.

”Earth is under constant bombardment by particles from space called galactic cosmic rays. Violent eruptions at the Sun’s surface can blow these cosmic rays away from Earth for about a week. Our study has shown that when the cosmic rays are reduced in this way there is a corresponding reduction in Earth’s cloud cover. Since clouds are an important factor in controlling the temperature on Earth our results may have implications for climate change“, explains lead author on the study Jacob Svensmark of DTU.

Very energetic particles
"Since clouds are an important factor in controlling the temperature on Earth our results may have implications for climate change"
Jacob Svensmark, lead author and research assistant

Galactic cosmic rays are very energetic particles originating mainly from super novae.

These particles generate electrically charged molecules – ions – in Earth’s atmosphere. Ions have been shown in the laboratory to enhance the formation of aerosols, which can serve as seeds for the formation of the cloud drops that make up a cloud. Whether this actually happens in the atmosphere, or only in the laboratory is a topic that has been investigated and debated for years.

When the large solar eruptions blow away the galactic cosmic rays before they reach Earth they cause a reduction in atmospheric ions of up to about 20 to -30 percent over the course of a week. So if ions affect cloud formation it should be possible to observe a decrease in cloud cover during events when the Sun blows away cosmic rays, and this is precisely what is done in this study.

The so-called 'Forbush decreases' of the cosmic rays have previously been linked to week-long changes in Earth’s cloud cover but the effect has been debated at length in the scientific literature.
The new study concludes that “there is a real impact of Forbush decreases on cloud microphysics” and that the results support the suggestion that “ions play a significant role in the life-cycle of clouds”.

Arriving at that conclusion was, however, a hard endeavor; Very few strong Forbush decreases occur and their effect on cloud formation is expected to be close to the limit of detection using global atmospheric observations measured by satellites and land based stations. Therefore it was of the greatest importance to select the strongest events for study since they had to have the most easily detected effect. Determining this strength required combining data from about 130 stations in combination with atmospheric modeling.

This new method resulted in a list of 26 events in the period of 1987-2007 ranked according to ionization. This ranked list was important for the detection of a signal, and may also shed some light on why previous studies have arrived at varied conclusions, since they have relied on events that were not necessarily ranked high on the list.

Possible long term effect

The effect from Forbush decreases on clouds is too brief to have any impact on long-term temperature changes.

However since clouds are affected by short term changes in galactic cosmic radiation, they may well also be affected by the slower change in Solar activity that happens on scales from tens to hundreds of years, and thus play a role in the radiation budget that determines the global temperature.

The Suns contribution to past and future climate change may thus be larger than merely the direct changes in radiation, concludes the scientists behind the new study.

Forbush-illu-lille-Svensmark-2016

 
Related News 

02 August 2016 Winners found in European youth...

Foto Thorkild Christensen

06 July 2016 Rufus Gifford joins Juno mission...

06 July 2016 Danish expertise essential to European...

05 July 2016 The goal is a person on Mars
Show more
News and filters
Get updated on news that match your filter.
DTU
Technical University of Denmark

For almost two centuries DTU, Technical University of Denmark, has been dedicated to fulfilling the vision of H.C. Řrsted – the father of electromagnetism



http://www.dtu.dk/english/News/Nyhed?id=b759b038-66d3-4328-bbdc-0b0a82371446

55
North American Shortwave Pirate / 8055khz 08 25 2016 sound clip.
« on: August 25, 2016, 2052 UTC »
Sound clip is here:

http://www65.zippyshare.com/v/5OY9vH6T/file.html

I'm posting this in hopes someone will be able to recognize something in this.  A very bad clip as far as noise is concerned but there are peaks from time to time.  I left 3db of headroom so there would be no more distortion to make matters worse.

Here it is and I hope some one might be able to ID something about this unknown station.

tnx  vgw

56
3nd harmonic of R. Progreso, Cuba on 14275 KHZ 0600 UTC 08 24 2016

I figured to let everyone know that this harmonic remains and just might aways will...

TNX Arnie!

57
Utility / beeper 10713 KHZ 1920 UTC 08 24 2016
« on: August 24, 2016, 2004 UTC »
beeper 10713 KHZ 1920 UTC 08 24 2016  S9 signal with moderate fading with RF = off and Atten = on.

(CW tone appox 560hz on USB side)

Off at 1953 UTC

appox 110 beeps per minute.  I might be off a bit because the roofers are putting on new shingles right over my head <sigh>

58
Forgive me for the fact that this came from a 'Climate Change' blog but this study may lead to a more accurate way to predict Sun spots and if this study is correct so far don't look for a much better solar maximum (propagation) than we saw this last time around. <sigh> vgw
-------------------------------------------------------------------------------
From: https://wattsupwiththat.com/2016/08/09/solar-physicist-sees-global-cooling-ahead/

Solar physicist sees global cooling ahead

Anthony Watts / 5 days ago August 9, 2016   

Via the GWPF: Recent research by Professor Valentina Zharkova (Northumbria University) and colleagues has shed new light on the inner workings of the Sun. If correct, this new discovery means that future solar cycles and variations in the Sun’s activity can be predicted more accurately.

The research suggests that the next three solar cycles will see solar activity reduce significantly into the middle of the century, producing conditions similar to those last seen in the 1600s – during the Maunder Minimum. This may have implications for temperatures here on Earth. Future solar cycles will serve as a test of the astrophysicists’ work, but some climate scientists have not welcomed the research and even tried to suppress the new findings.
New Solar Research Raises Climate Questions, Triggers Attacks

To most of us the sun seems unchanging. But if you observe its surface, it is seething with vast explosions and ejections. This activity has its origin in intense magnetic fields generated by swirling currents in the sun’s outer layer – scientists call it the solar dynamo.

It produces the well-known 11-year solar cycle which can be seen as sunspots come and go on the sun’s surface.

But models of the solar dynamo have only been partially successful in predicting the solar cycle – and that might be because a vital component is missing.

After studying full-disc images of the sun’s magnetic field, Professor Valentina Zharkova of Northumbria University and colleagues, discovered that the sun’s dynamo is actually made of two components – coming from different depths inside the sun.

The interaction between these two magnetic waves either amplifies solar activity or damps it down. Professor Zharkova’s observations suggest we are due for a prolonged period of low solar activity.

    Professor Valentina Zharkova:

    We will see it from 2020 to 2053, when the three next cycles will be very reduced magnetic field of the sun. Basically what happens is these two waves, they separate into the opposite hemispheres and they will not be interacting with each other, which means that resulting magnetic field will drop dramatically nearly to zero. And this will be a similar conditions like in Maunder Minimum.

    What will happen to the Earth remains to be seen and predicted because nobody has developed any program or any models of terrestrial response – they are based on this period when the sun has maximum activity — when the sun has these nice fluctuations, and its magnetic field [is] very strong. But we’re approaching to the stage when the magnetic field of the sun is going to be very, very small.

She suggests it could be a repeat of the so-called Maunder Minimum – a period in the 17th century with little solar activity that may have influenced a cooling on Earth.

    Whatever we do to the planet, if everything is done only by the sun, then the temperature should drop similar like it was in the Maunder Minimum. At least in the Northern hemisphere, where this temperature is well protocoled and written. We didn’t have many measurements in the Southern hemisphere, we don’t know what will happen with that, but in the Northern hemisphere, we know it’s very well protocoled. The rivers are frozen. There are winters and no summers, and so on.

    So we only hope because these Maunder Minima will be shorter, the Maunder Minimum of the 17th century was about 65 years, the Maunder Minimum which we expect will be lasting not longer than 30-35 years.

Of course things are not the same as they were in the 17th century – we have a lot more greenhouse gas in the atmosphere. And it will be interesting to see how the terrestrial and the solar influences play out.

This is promising research – a new insight into our sun with predictions as to its future behavior, yet Professor Zharkova relates than some climatologists resented her discovery.

    Professor Valentina Zharkova: 

    Some of them were welcoming and discussing. But some of them were quite — I would say — pushy. They were trying to actually silence us. Some of them contacted the Royal Astronomical Society, demanding, behind our back, that they withdraw our press release. The Royal Astronomical Society replied to them and CCed to us and said, ‘Look, this is the work by the scientists who we support, please discuss this with them.’ We had about 8 or 10 exchanges by email, when I tried to prove my point, and I’m saying, I’m willing to look at what you do, I’m willing to see how our results we produced and what the sun has explained to us. So how this is transformed into climate we do not produce; we can only assume it should be. So we’re happy to work with you, and add to your data our results. So don’t take the sunspots which you get, we can give you our curve. Work with our curve. So they didn’t want to.

Professor Zharkova’s work may have significantly improved our ability to forecast solar activity. If we do enter a new Maunder Minimum, then we are bound to discover new things about our sun and its influences on our climate.

59
QSLs Received / XFM QSL Card !!!!
« on: July 28, 2016, 2111 UTC »
First card I have received in over 30 or so years...

happy happy joy joy happy happy joy joy...

happy dance....

thanks XFM for breaking my dry spell !!!!!!

60
Huh? / Who is this famous radio Pirate?
« on: July 10, 2016, 1742 UTC »
Yes and once again we play who is this famous Person, this time it's a radio Pirate.

Famous Radio Pirate   ;D

Pages: 1 2 3 [4] 5 6 7 8 9 10 11 12 ... 17